- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Yong Jae (2)
-
Li, Yuheng (2)
-
Senthil, T. (2)
-
Singh, Krishna Kumar (2)
-
Song, Xue-Yang (2)
-
Xue, Yang (2)
-
Zhang, Ya-Hui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Song, Xue-Yang; Zhang, Ya-Hui; Senthil, T. (, Physical Review B)
-
Xue, Yang; Li, Yuheng; Singh, Krishna Kumar; Lee, Yong Jae (, Conference on Computer Vision and Pattern Recognition (CVPR))
-
Li, Yuheng; Singh, Krishna Kumar; Xue, Yang; Lee, Yong Jae (, British Machine Vision Conference (BMVC))We propose PartGAN, a novel generative model that disentangles and generates background, object shape, object texture, and decomposes objects into parts without any mask or part annotations. To achieve object-level disentanglement, we build upon prior work and maximize the mutual information between the generated factors and sampled latent prior codes. To achieve part-level decomposition, we learn a part generator, which decomposes an object into parts that are spatially localized, disjoint, and consistent across instances. Extensive experiments on multiple datasets demonstrate that PartGAN discovers consistent object parts, which enable part-based controllable image generation.more » « less
An official website of the United States government

Full Text Available